
exascaleproject.org

Experience with using OpenMP offloading to
achieve performance portability for the Grid
lattice QCD library

Meifeng Lin (Brookhaven National Laboratory)

Collaborators: Peter Boyle (BNL/U. Edinburgh), Lingda Li (BNL), Kate Clark (NVIDIA),
Alejandro Vaquero (U. Utah), Vivek Kale (BNL), Barbara Chapman (BNL/SBU)

P3HPC Forum, September 1-2, 2020

2

Lattice QCD
• Lattice Quantum Chromodynamics (QCD) is a numerical

framework to simulate the strong interactions between quarks
and gluons.

• continuous 4D space-time => 4D lattice after discretization

• Physical observables calculated from lattice QCD provide
important insights to the QCD theory through comparisons
with experimental results, e.g.
– Internal structures of protons, pions, etc.
– Bounds for new physics

• Key Algorithm Motifs
– Markov Chain Monte Carlo
– Sparse matrix inversions

quarks'

gluons'

Illustration of a 3D lattice

Visualization of QCD topological
charge density. M. McGuigan (BNL)

3

Computational Kernel
• The core computational kernel of lattice QCD is matrix vector multiplications – the so-

called Dslash operator.
𝑫𝜶𝜷
𝒊𝒋 𝒙, 𝒚 𝝍𝜷

𝒋 𝒚 = ∑𝝁&𝟏𝟒 [(𝟏 − 𝜸𝝁)𝜶𝜷𝑼𝝁𝒊𝒋 𝒙 𝜹𝒙*+𝝁,- + (𝟏 + 𝜸𝝁)𝜶𝜷𝑼𝝁*
𝒊𝒋 𝒙 + 1𝝁 𝜹𝒙.+𝝁,-] 𝝍𝜷

𝒋 𝒚

– 𝒙, 𝑦: 4D coordinates
– 𝜸𝝁: 4✕4 matrices (fixed)

– 𝑼𝝁 𝑥 : complex 3✕3 matrices, 4 per lattice site (main memory usage)

– 𝝍 𝒚 : complex 12-component vectors, 1 per site (main memory usage)

• Matrix-vector multiplication form is known analytically. No actual matrices are stored.

• Memory requirements per site: 9×2×4 + 12×2 ×8 = 768 bytes (DP)

• Floating point operations for Wilson Dslash: 1320 flops per site

• Low arithmetic intensity: 1.7 flops/byte (DP) or 3.4 flops/byte (SP)

4

The Grid C++ QCD Library

Data Layout for Lattice QCD
• Canonically use volume-size Arrays of Structs (site-local objects)

• psi[t][z][y][x][Ns][Nc][2]
• Site-local operations highly nonlinear
• Not SIMD friendly

• Could also rearrange the indices: make one of the lattice dimensions inner index
• psi[t][z][y][Ns][Nc][2][x]
• Could potentially vectorize over x
• Choice of Lx becomes inflexible (has to be multiples of the SIMD length)

• Further decompose the lattice into sub-lattices (virtual nodes) [P. Boyle, 1512.03487]

 16
SIMD lanes

Mapping SIMD Data Layout Onto GPUs

• Same SIMD layout can also work on GPUs
• Map SIMD lanes onto GPU threads, and “virtual nodes” onto thread blocks
• Basically treat GPUs as very wide SIMD machines

GPU threads

A thread block

 19

• Grid[1] is a C++ library for lattice QCD

• Initially designed for SIMD architectures with long
SIMD length (Intel Knights Landing, Skylake, etc.).

• Arranges the data layout as if the lattice is divided into
virtual “sub-lattices”.

• Each sub-lattice uses one SIMD lane.

• Same data layout can be mapped to GPU architectures

• C++11 (lambda, auto types, etc.)

• Extensive use of templates for high-level abstraction

• Custom expression template engine for performance

Data mapping on SIMD architecture

Data mapping on SIMT architecture

[1] P. Boyle et al., arXiv:1512.0348, https://github.com/paboyle/Grid

5

Grid’s Performance Portable Design
• Header file with macros to encapsulate architecture-dependent implementations

• Custom AlignedAlloctor for dynamic memory allocation on different architecture

#ifdef GRID_NVCC
#define accelerator __host__ __device__
#define accelerator_inline __host__ __device__ inline
#define accelerator_for (…) { //CUDA kernel}

#else
#define strong_inline __attribute__((always_inline)) inline
#define accelerator
#define accelerator_inline strong_inline
#define accelerator_for(…) thread_for(…) //for loop with #pragma omp parallel for

#ifdef GRID_NVCC
if (ptr == (_Tp *) NULL) auto err = cudaMallocManaged((void **)&ptr,bytes);

#else
#ifdef HAVE_MM_MALLOC_H

if (ptr == (_Tp *) NULL) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
#else

…

6

Grid Structure

Core Software

7

GridMini
• A substantially reduced version of Grid

for experimentation with different
programming models.

• Retains same Grid structure: data
structures/types, data layout, aligned
allocators, macros, …

• Only keeps the high-level components
necessary for the benchmarks.

• SU(3)✕SU(3) benchmark: STREAM-
like memory bandwidth test

• Important as LQCD is bandwidth bound.

Benchmark_su3

LatticeColourMatrix z(&Grid); //Arrays of SU(3)
LatticeColourMatrix x(&Grid); //Arrays of SU(3)
LatticeColourMatrix y(&Grid); //Arrays of SU(3)

double start=usecond();
for(int64_t i=0;i<Nloop;i++){

z=x*y;
}
double stop=usecond();
double time=(stop-start)/Nloop*1000.0;

double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
double bandwidth=bytes/time; //GB/s
double Gflops=flops/time; //0.9 flops/byte SP

8

• In the CUDA implementation, Grid’s SIMD data layout
can be used to force data coalescencing.

• Same data layout across SIMD and SIMT archs.

Previous Work
• Previously[2] explored porting Grid to GPUs using

OpenACC, JIT and CUDA.

• Use coalesced_ptr[3]to force data coalescencing
to get best performance.

[2] Boyle, Peter A., et al. "Performance portability strategies for grid C++ expression templates." EPJ Web of
Conferences. Vol. 175. EDP Sciences, 2018. [3] https://github.com/maddyscientist/coalesced_ptr

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

G
B/

s

L

Peak Memory Bandwidth
OpenACC

Jitify, w/ coalesced_ptr
CUDA, w/ coalesced_ptr

NVIDIA GTX1080, peak mem b/w 288 GB/s

9

OpenMP Offloading
• To add OpenMP offloading (to NVIDIA GPUs) for Benchmark_su3, only two

changes required.

• New macros

• Use cudaMallocManaged for the memory allocator (for now)

#elif defined (OMPTARGET)
#define accelerator_inline strong_inline
#define accelerator_for(iterator,num,nsimd, ...) \
{ \

_Pragma("omp target teams distribute parallel for”) \
naked_for(iterator, num, { __VA_ARGS__ }); \

}

#if definded (GRID_NVCC) || defined (OMPTARGET_MANAGED)
if (ptr == (_Tp *) NULL) auto err = cudaMallocManaged((void

**)&ptr,bytes);

10

Issues
• Deep copy: explicit data mapping nontrivial due to deep nested data structures
– Managed/Unified memory greatly simplifies things

• Incorrect results: output always 0 after offloading
– Compiler bug related to the use of struct of short vectors as device function return type.

– Fixed as of llvm/12.0.0-git_20200731

struct vec {
float v[2];

};

inline vec mult(vec x, vec y){
vec out;
out.v[0]=x.v[0]*y.v[0];
out.v[1]=x.v[1]*y.v[1];
return out; //causing issue here

}

vec in1,in2;
vec out[N];
#pragma omp target teams distribute parallel for
map(to:in1,in2) map(from:out[0:N])
for(int n=0;n<N;n++) {

out[n]=mult(in1,in2);
}

Got: 0.000000 0.000000
Expected: 2.000000 2.000000

11

Compiling and Performance
• Compiling with clang++ (Original)

• Performance of Benchmark_su3 maxed out at 125 GB/s on NVIDIA V100 (Cori-GPU)
– Peak memory bandwidth should be 900 GB/s

• Learned about -fopenmp-cuda-mode at the SOLLVE OpenMP Hackathon*.

– Guarantees to the compiler that the target region is in SPMD mode
– Performance improved significantly (5X)!

*Special thanks: Rahul Gayatri (LBNL), Johannes Doerfert (ANL)

CXX=clang++
CXXFLAGS=-std=c++14 -g -fopenmp -O3 -fopenmp-targets=nvptx64-nvidia-cuda \

-lcudart

CXX=clang++
CXXFLAGS=-std=c++14 -g -fopenmp -O3 -fopenmp-targets=nvptx64-nvidia-cuda \

-lcudart –fopenmp-cuda-mode

12

SU(3)xSU(3) Performance Comparison

● With -fopenmp-cuda-mode

● thread_limit(8) seems to be
slightly better than 32 or
128.

● CUDA bandwidth plateaus
much earlier: why?

● With large data, OpenMP
version is about 90% of
CUDA performance.

● With small data sizes,
OpenMP performs much
worse: OpenMP version has
more overhead?

*benchmark performed on Cori GPU (V100);
llvm/12.0.0_git_20200731; cuda/10.1.243

13

Profiling

Culprit for poor performance at
small memory footprints:
30% time spent on
cuMemAlloc/cuMemFree

OpenMP

● A known issue of LLVM when many short lived
objects with non-overlapping lifetimes are
mapped.

● Solution: Keep and reuse previously freed
memory instead of giving and to CUDA and
asking for it again.
See https://reviews.llvm.org/D81054

● Pool allocation is next to reduce the cost for
many consecutive small allocations with
overlapping lifetimes.

See https://reviews.llvm.org/D85274

https://reviews.llvm.org/D81054
https://reviews.llvm.org/D85274

14

Patched

*benchmark performed on Cori GPU (V100); patched version
uses llvm/12.0.0_git_20200731-shilei; cuda/10.1.243

● A patch exists to optimize the
memory management in LLVM.

● The patch improves the
performance significantly, in
particular with small- to medium-
sized data footprints.

● The performance is on par with
the CUDA version for the most
part.

● The patch has been merged
into the LLVM mainline.

15

Progression of Performance (LLVM12)

● Original gets best performance
with 128 threads (also compiler
default).

● 8 threads per block seems to be
the sweet spot with -fopenmp-
cuda-mode, both patched and
unpatched.

● Setting num_teams together with
thread_limit doesn’t seem to
have much effect, since compiler
generates num_teams based on
of threads and the loop count,
same as the manual num_teams.

*benchmark performed on Cori GPU (V100); patched version
uses llvm/12.0.0_git_20200731-shilei; others use
llvm/12.0.0_git_20200731; cuda/10.1.243

16

Summary and Next Steps
• OpenMP offloading to GPUs seems feasible in GridMini.

• LLVM compiler support for omp target has improved a lot!

• Communication with the compiler team is very important.
– Benefits go both ways.

• Next Steps:
– Make the code truly portable: replace cudaMallocManaged with either explicit target data

clauses or OpenMP’s unified_shared_memory clause (when supported).
– Investigate the effects of SIMD vs Scalar (SIMD length=1) data layout

• right now using Scalar data layout.

– Move on to the Dslash benchmark: this is our true interest.

17

Acknowledgments
• ML thanks Johannes Doerfert (ANL) and Rahul Gayatri (LBNL) for their help during

the OpenMP Hackathon on August 3-7, 2020.

• Some of the benchmarks used the computing resources at NERSC and OLCF.

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE
organizations – the Office of Science and the National Nuclear Security Administration – responsible for the planning and preparation of a
capable exascale ecosystem – including software, applications, hardware, advanced system engineering, and early testbed platforms – to
support the nation's exascale computing imperative. This research used resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract No. DE-AC05-
00OR22725.

